Dynamic parameter adaptation in Ant Colony Optimization using a fuzzy system for TSP problems
نویسندگان
چکیده
Fuzzy logic has been a useful tool for modeling complex problems, with the use of fuzzy variables and fuzzy rules, and in this paper we use a fuzzy system for parameter adaptation in the Ant Colony Optimization (ACO metaheuristic). In this case we perform the dynamic adaptation of Alpha and Rho parameters; this is to control the abilities of ACO to perform a global and local search. Simulation results show the advantage of the use of a fuzzy system for parameter adaptation.
منابع مشابه
A CONSTRAINED SOLID TSP IN FUZZY ENVIRONMENT: TWO HEURISTIC APPROACHES
A solid travelling salesman problem (STSP) is a travelling salesman problem (TSP) where the salesman visits all the cities only once in his tour using dierent conveyances to travel from one city to another. Costs and environmental eect factors for travelling between the cities using dierent conveyances are dierent. Goal of the problem is to nd a complete tour with minimum cost that damages the ...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملMMAS Algorithm using Fuzzy Rules
The real life problems deal with imperfectly specified knowledge and some degree of imprecision, uncertainty or inconsistency is embedded in the problem specification. The well-founded theory of fuzzy sets is a special way to model the uncertainty. The rules in a fuzzy model contain a set of propositions, each of which restricts a fuzzy variable to a single fuzzy value by means of the predicate...
متن کاملA new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot
Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The pres...
متن کامل